Phân phối hình học (Geometric Distribution)
Phân phối hình học có nhiều ứng dụng trong các lĩnh vực khác nhau:
- Quản lý chất lượng: Được sử dụng để mô hình hóa số lượng sản phẩm phải kiểm tra trước khi tìm thấy một sản phẩm bị lỗi.
- Viễn thông: Được sử dụng để mô hình hóa số lượng lần truyền tín hiệu trước khi tín hiệu được truyền thành công.
- Khoa học máy tính: Sử dụng để phân tích hiệu suất của các thuật toán ngẫu nhiên, như số lượng lần lặp cần thiết để giải quyết một vấn đề.
- Sinh học: Mô hình hóa số lượng thí nghiệm cần thực hiện để quan sát một sự kiện sinh học nhất định.
Ví dụ minh họa
Giả sử bạn đang chơi một trò chơi, trong đó bạn lật một đồng xu cân bằng (xác suất p=0.5 để có mặt ngửa). Bạn muốn biết xác suất rằng phải lật đồng xu 3 lần mới có được mặt ngửa đầu tiên.
Sử dụng phân phối hình học, ta có: P(X=3) = (1−0.5)3−1×0.5 = 0.52×0.5 = 0.125
Do đó, xác suất rằng bạn phải lật đồng xu 3 lần mới có mặt ngửa đầu tiên là 12.5%.
Phân phối hình học cung cấp một công cụ mạnh mẽ để phân tích các quá trình và hệ thống mà trong đó chúng ta quan tâm đến số lần thử cần thiết để đạt được thành công đầu tiên.
Sự kiện A có xác suất xuất hiện trong một phép thử là p. Lần lượt thực hiện phép thử cho đến khi A xuất hiện. Sô' lần thực hiện phép thử cho đến khi A xuất hiện là biến X có phân phối hình học.
Bảng phân phối có dạng:
| X | 1 | 2 | ... | k | ... |
| P | p1 | p2 | ... | pk | ... |
pk = p(X=k) = qk-1p với q = 1 - p (k = )
Kì vọng: E(X) =
Phương sai: var(X) =
Thí dụ 1
Lô hàng khá lớn có 20% phế phẩm. Kiểm tra lần lượt cho đến khi phát hiện phế phẩm.
Gọi X là số sản phẩm đã kiểm tra, X phân phối hình học với p = 0,2.
Kì vọng E(X) = = 5
Phương sai var(X) = = 20
Thí dụ 2
Phát tín hiệu liên lạc với trạm bạn, xác suất nhận được là 0,4. Nếu trạm bạn báo đã nhận được tín hiệu thì dừng, nếu không thì phát tiếp. Gọi X là số tín hiệu đã phát cho đến khi dừng, X phân phối hình học với p = 0,4.
Kì vọng E(X) = = 2,5
Phương sai var(X) = = 3,75
Tóm lại:
- Kỳ vọng E(X) = 2,5: Bạn dự kiến sẽ cần phát trung bình 2,5 lần tín hiệu để trạm bạn nhận được tín hiệu.
- Phương sai var(X) = 3,75: Số lần phát tín hiệu sẽ có mức độ biến thiên xung quanh giá trị trung bình 2,5 với phương sai là 3,75.